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Sound propagation in a fluid flowing through an 
attenuating duct 

By D. C. PRIDMORE-BROWN* 

Department of Mathematics, University of Manchester 

(Receizwd 19 March 1958) 

SUMMARY 
A study is made of the propagation of sound in both a constant 

gradient shear flow and a turbulent shear flow above a flat surface. 
Curves are presented showing how, in the case of downstream 
propagation, the flow gradient tends to channel the sound energy 
into a narrow layer next to  the wall. These results are used in 
estimating the effect of a flow on the attenuation of sound in a duct 
with absorbing side walls. 

1. INTRODUCTION 
Undesired sound is frequently attenuated by having it pass through 

ducts with absorbing side walls. If the absorptive properties of the walls 
are described by a normal impedance, and if there is no air flow in the duct, 
the resulting attenuation is easily predicted on the basis of existing theory 
(see, for example, Morse 1939). In many cases, however (e.g. in ventilating 
ducts or the exhaust ducts in certain wind tunnels or jet-engine test cells), 
there is also a flow of air through the duct which may affect the rate of 
sound attenuation. Downstream, for instance, the velocity gradients in 
the boundary layers might be expected to direct the sound into the absorbing 
walls and so increase the attenuation. 

A particularly simple case to study is that of sound propagating in a 
fluid which is flowing between two parallel walls. Here the flow velocity 
can be assumed to be approximately constant throughout a central region 
between the walls and to fall to zero within the two boundary layers. Since 
the flow profile will be symmetric about a centre line drawn midway between 
the walls, it is then sufficient to consider just half the region, i.e. that between 
the centre line and one wall. On a ray acoustics picture it is clear that 
sound rays propagating upstream in one of the boundary layers will be bent 
away from the wall, while rays propagating downstream will be bent towards 
it, and in certain cases may be expected to suffer repeated successive reflections 
in the wall surface. A ray treatment is not, however, generally adequate for 
ascertaining the actual sound pressure distribution across such a shear layer 
owing to the tendency, pronounced at lower frequencies, for the acoustic 
energy to diffuse away from regions where it is concentrated. It is therefore 
desirable to adopt a wave treatment from the outset. 

* Now at  Mechanical Engineering Department, Massachusetts Institute of Tech- 
nology. 
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We shall confine our attention to  the problem of a two-dimensional 
acoustic wave propagating downstream in a shear layer above a plane wall. 
Within the shear layer we shall consider only the lowest mode of propagation. 
Thus the boundary condition to be imposed on the sound wave will be that 
the normal component of the particle velocity (in a direction perpendicular 
to  the wall) must vanish both at the wall surface and at the top of the shear 
layer, so that the wave matches smoothly on to a plane wave above the layer. 
First we study the simplest case of perfectly rigid side walls and a constant 
gradient of flow velocity, and then we extend the analysis to a turbulent 
flow profile in which the flow velocity increases as the one-seventh power 
of the distance from the wall. For both these cases representative curves 
are given showing the variation of sound pressure across the duct which is 
brought about by the presence of the flow gradient. Finally, we shall 
study the effect of the shear flow on the attenuation of the sound when the 
walls have a small admittance. I n  this case the flow has two contrary 
effects on the sound transmission. I n  the first place (for downstream 
propagation) it tends to increase the absorption by directing sound into 
the walls as previously pointed out. On the other hand, for wavelengths 
long compared to the shear layer thickness, this refraction by the flow 
gradient becomes quite negligible and may in fact be counterbalanced by 
the increase of intensity in the central region which results from the 
transport of acoustic energy by the flow. 

2. THE BASIC EQUATIONS 

We shall first derive the wave equation in a form suitable for studying 
the propagation of sound in a shear flow. If we consider the flow velocity 
V to lie in the x-direction and to be a function of y only, then, neglecting 
viscosity, we obtain the linearized Navier-Stokes equations for the 
conservation of mass and momentum in the form 

aP - + v  - aP +po(g + $) = 0, 
at ax 
au au av 1 ap - +v- 1-v- + - - = 0, 
at ax ay ax 

av av 1 ap - + v- + - - = 0. 
at ax ay 

Here po represents the static density of the medium, which is assumed 
constant ; the density fluctuations p, the sound pressure p, and the particle 
velocity components u and el are small quantities of the first order. If the 
further assumption is made tha tp  = c2p, that is, that the pressure and density 
are adiabatically related, then these equations yield 

where M = Vjc. 
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We shall be interested in solutions to equation (4) of the form 

(5 1 
p = eik(xJ:-ct)F(K,y), 
z, = eik(Kz-Ct)G(K,y), 

where F and G are related by equation ( 3 ) ,  

= ipoc12(1 -KM)G.  
dY 

Substituting these expressions into the differential equation (4), we obtain 

d2F - + -- 2KM dF + k 2 [ ( 1 - ~ M ) 2 - ~ 2 ] F =  0, 
dy2 l - ~ M d y  (7) 

where M’ = dM/dy. This equation must be satisfied by the pressure 
amplitude F subject to the boundary conditions dF/dy = 0 at y = 0 and 

Although the approximate method of solution we shall employ can be 
applied to a fairly wide class of velocity profiles, the analysis is considerably 
simplified by taking the flow to have a constant velocity gradient. Actually, 
the velocity of a turbulent fluid flowing over a flat plate increases approxi- 
mately as the one-seventh power of the distance from the plate. We shall, 
however, first consider the simple case of a constant gradient before treating 
the physically more realistic situation described by the one-seventh power 
law. 

y = L. 

3. THE CONSTANT GRADIENT BOUNDARY LAYER 

For the constant gradient case we put M’ = k/A where A is a constant 
and introduce 9 = K - ~ -  M as the independent variable in (7), which then 
reduces to 

Approximate solutions to equation (8), valid asymptotically for large A, 
These are ,can be obtained by a method proposed by Langer (1937). 

F = 7 ~ ~ 1 ~ p - ~ / ~ f ( ~ ) ,  
where 

q = 7 2 -  1 ,  

s = 
1 

u = ($AKS)~ /~ ,  

q1I2 d7 = +{q(q2 - l)li2 - cosh-l .I}, 

andf(u) is the general solution of 

f”(u)  + u f ( u )  = 0. (9 a) 

These solutions will, of course, break down at 7 = 0, i.e. when the flow 
velocity equals the propagation velocity, and hence cannot be used through 
this point. We shall accordingly assume always that the flow is subsonic 
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and q > 0. The function f can be expressed either in terms of one-third 
order Bessel functions, namely U1’zJ1/3(#U3’2) and U1’2J-1,3($U3‘2), or as Airy 
integrals, Ai( - u) and Bi( - u). 

If we denote two independent solutions of (8) by Fl and F2, then the 
combination of these which satisfies the boundary conditions is 

where 
F = F1- RF,, 

and 
R ( y  = 0 )  = R ( y  = L) .  

In terms of Airy integrals we have 
F = q~~’%-l/~[Bi( - U) - R Ai( - u)], 

and 
4 Bi( - U) - (AK)’/~ Si’( - U) 
4 Ai( - U) - (AK)~’~ Ai’( - U) ’ R =  

where 
4 = ( l2~) -~ /~ [1 -3 (2 -q~) / (7q~’~) ] .  

We shall be interested 
in the smallest one of these, corresponding to the lowest mode of propagation 
in the duct. For particular values of A and kL the equation can be solved 
for K by a method of successive approximation. It is clear on physical 
grounds that for downstream propagation the propagation velocity C K - ~  

must lie between c and c( 1 + Ml), where Ml is the value of M at y = L. 
When there is little refraction by the flow, i.e. for low frequencies or small 
flow velocities, C K - ~  will lie nearly midway between these values. On the 
other hand, in cases where the refraction is large and most of the sound is 
propagating near the walls, then CK-1 will be nearer the smaller of these 
values. These considerations are a help in guessing a first value for K. 

For purposes of calculation the quantities s, u, 4 occurring in (11)’ 
and (12) are most conveniently expressed as power series in the small 
quantity E = 7 - 1 = K-1- M -  1, namely, 

Equation (10) determines the eigenvalues of K.  

242 
3 

s = - ~ ~ ~ ~ [ l + 0 ~ 1 5 0 ~ - 0 - 1 3 4 ~ ~ + . , . ] ,  

= 21‘3(~~)2/3 o.iooE - 0.012~2 + ...I, 
4 = 0.7143 - 0.89386 + 0 . 9 5 5 ~ ~  + ..., 
F = 3-ll6(1 + 0-90~)[Bi( - u )  -R Ai( - u ) ] .  

Figures 1 and 2 are plots of the sound pressure level in decibels (i.e. of 
2010g10(p/p1)) across one of the boundary layers in the duct as a function 
of the distance from the wall for different values of M,, the Mach number 
at the top of the layer. In figure 1, kL = 2rr, that is, the boundary layer 
thickness L is equal to a wavelength, while in figure 2, kL = 20. The 
shear flow is seen to have a much greater effect on the high frequencies 
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0 0.2 0.4 0.6 0.8 1.0 
Y/L 

Figure 1. Sound pressure level in decibels (20 log,,(p/p,)) as a function of distance 
from the wall for a sound wave of frequency parameter k L  = 2n which 
propagates in a flow whose Mach number increases from 0 at the wall to M ,  at 
a distance L from the wall. 

70 

6 0  

a- 
& 50 

20 

0 0-2 0.4 0.6 0.8 1.0 

Y/ L 
Figure 2. Sound pressure level in decibels as a function of distance from the wall 

when kL = 20. 
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than on the low; in fact, for the higher frequency (kL = 20) the theory 
predicts a pressure difference of as much as 90 decibels for a flow of Mach 
number 0.5. The Mach number dependence of the sound pressure profile 
is illustrated in figure 3, where the sound pressure difference in decibels. 
across the shear layer has been plotted as a-function of Mach 
the two cases kI, = 27r and kL = 20. 

number for 

0 0.1 0-2 0.3 0.4 0.5 
M, 

Figure 3. Sound pressure level difference in decibels across the shear layers of 
figures 1 and 2. 

4. THE TURBULENT BOUNDARY LAYER 

We now consider a typical turbulent boundary layer in which the average 
flow velocity varies as the one-seventh power of the distance from the wall. 
Setting M = M1(y/L)1/7 in (7) and using M as the- independent variable 
we obtain 

(q2-1)F=0, (13) d2F 

where, as before, q = K-1- M. 

to this equation in the form 

where 

Langer’s method can again be employed to give asymptotic solutions 

F = M37~1’6q--1/4 [Bi( - U )  - R Ai( - u)], (14) 

4 = M12(q2- l), u = (#AKs)”~, 

s = 1: q1’2 dq, A = ~ K L M F ~ .  

The boundary conditions are satisfied, as before, by requiring that R, be 
equal to R,, the subscripts referring to values aty = 0 andy = L, respectively. 
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A difficulty now presents itself in determining the form of R at y = 0. 
This arises because the coefficient of dF/dM in equation (13) is singular 
at y = 0 (i.e. M = 0), and hence the equation does not satisfy the conditions 
of Langer’s theory right at this point. Langer’s solutions are, however, 
valid asymptotically (A + co) in the neighbourhood of y = 0. Now 
equation (13) has only a regular singular point at M = 0, and hence its 
independent solutions can be found as Laurent series with indices 0 and 7. 
The first few terms of the general solution turn out to be 

F = cI( 1 - &A2( 1 - ~ ~ ) d ’ f ~ ~  + .. .) + 
+ c2(M7( l  - ~ K M + ~ M ~ )  -k4A2(1 - K ~ ) M ~ ~  + ...), (15). 

where c1 and c2 are constants. Remembering that y is proportional to M 7 ,  
we see that the condition dF/dy = 0 at y = 0 rules out the solution which 
starts as Mi. Hence we can replace the boundary condition at the wall by 
the condition that as A + co and M -+ 0, equation (14) must tend to 
equation (15) with c2 = 0. The calculation involves substituting the 
asymptotic forms of the Airy integrals into equation (14) and expanding the 
other quantities in powers of M. The result turns out to  be that (15), with 
c2 = 0, is asymptotically equivalent to 

where u, is u at y = 0. Thus we see that 

- u )  + (Ai( - uo)/Si( - u,))Ai( - u ) ] ,  

R, = - Ai( - u,)/Bi( - u,). (16) 
At y = L equation (13) is well behaved and hence R, has the form given in 
equation (12), where now 

Again, for calculation it is useful to expand the various quantities. 
appearing in (14) as series in E = y - 1 and /I = E/(K-’- 1). 

where 

First, 
s = z Y ’ 2 ( K - ’  3 - 1)6€3’ya, + a, E + a2 €2 + . . . ), 

a, = 3(+ - !/3 + ya2- ?/33 + g/34 - 3 5  + L#), 

a, = $(+-$3+yp-... +$36),  

a2 = - L(1- ?/I+ gp2 - ... + ha6), 
32 6 9 

and so on. Secondly, 

where 
U = 21’3(AK)2’3(K-1- 1)ay3(1 + C 1 E + C 2 E 2 +  ...), 
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and 

Finally, 
bi  = a J ( 1 -  p)6. 

F = 3 - l i 6 ( K - ' -  l)a:i6(1 +g l ~ + g 2 ~ 2 + . . . ) ( B i (  - u ) - R A i (  -u)>,  
where 

g, = 0.875 + 0.167 E! , 
a, 

a 

an an 
g, = -0.086+0*146 2 + 0 * 1 6 7 3  -0.07 

. -  

As an aid in calculation the quantities a:)'6, -cl and g, have been 
plotted in figure 4 as functions of /3 = 1 - - M ( Y ) / ( K - ~ -  1). Note that in 
order to evaluate F for a given set of values of the parameters Ml and kL, 

-0.2 0 0.2 0.4 0.6 0.8 1.0 
P 

Figure 4. A plot of various quantities appearing in the numerical evaluation of 
equation (14). 

it is necessary first of all to ascertain the value of K - ~  which satisfies the 
boundary conditions, R, = R,, where these quantities are given in 
equations (16) and (12), respectively. In these expressions u, means the 
value of u at y = 0, i.e. at E = K-,-  1, and u1 is the value of u at y = L 
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or 7 = K - 1 -  1 -MI. Having obtained K - ~  by a method of successive 
approximation, one then has 13, and hence the various coefficients in the 
above power expansions, as functions of y, and, in terms of these, the 
function F is determined. 

Figure 5 is a plot of the turbulent boundary layer profile MIM, = (y/L)l'' 
as a function of ylL. In figure 6 the sound pressure variation across such 

20 

16 
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n- 
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0 0.2 0.4 0.6 0.8 

Y/L 

Figure 6. Sound pressure variation across the flow profile of figure 5 for MI 0.2 
and kL = 20. 

P.M. 2 c  
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a profile is plotted for the case Ml = 0.2, kL = 20. The dip in the curve 
near y = 0 does not have a physical basis but is merely a manifestation of 
the fact that the Langer solution breaks down at this point. The curve is 
qualitatively similar to that for Ml = 0.05 in figure 2, which was drawn for 
the case of a constant flow gradient. This is physically not surprising if 
we consider the shape of the turbulent boundary-layer profile. Referring 
to figure 5 we see that the one-seventh-power curve can be replaced with 
a fair degree of approximation over most of its range by a straight line of 
slope Ml/4L starting from A4 = $Ml at y = 0, as is indicated by the dotted 
line. The area under the two curves is the same, although the dotted line 
involves a change in M of only $Ml. Thus, we see that a reasonable estimate 
of the sound pressure distribution across a turbulent shear layer is obtained 
by considering the distribution across a suitable constant flow gradient, 
for which the calculation is far less laborious. 

5. EFFECT OF FLOW ON THE ATTENUATION OF SOUND IN A DUCT 

We now suppose the side walls to be absorbing, so that the sound is 
attenuated as it propagates, and we ask what effect the presence of an air 
flow will have on this attenuation. We assume that the absorption of 
acoustic energy by the walls is sufficiently small so that the sound pressure 
profile across the duct is not sensibly different from that which has already 
been calculated on the assumption that the walls were non-absorbing. 
Then the power transmitted down a unit width of the duct in one of the 
boundary layers is 

where I ( y )  is the intensity of the sound field in the absence of absorption. 
On the other hand, the power absorbed in an interval dx of the side wall 
will be approximately 

= - - ~ d x .  PE 
POC 

Here p o  is the value of p at the wall y = 0;  W ( 2 )  denotes the real part of 
the wall impedance 2, and tc/poc = 9(2)/1212 is the real part of the wall 
admittance. Thus the power in the duct diminishes according to the 
relation 

If there were no flow and the acoustic pressure were uniform across 
the face of the duct, then we should have I = p,"/(po c )  and 

This suggests writing (17) in the form 

w = wo e-ax:iL. 

w = w" e-nasl l ,  
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where 

The  quantity n = n(kL, M ) ,  which is a function of both the frequency and 
the flow velocity, is then a measure of the increase in attenuation due to the 
presence of the flow. I n  other words, if the acoustic intensity in a certain 
frequency component is attenuated at the rate of, say, 6 decibels in a unit 
distance without flow, then in the presence of the flow it should be attenuated 
by 6n decibels in the same distance. 

I n  order to evaluate n we must first obtain an expression for the intensity 
I ( y ) .  It is more difficult to determine the acoustic intensity in the shear 
flow than it is to obtain the pressure profile across it owing to the fact that, 
unlike the pressure, the intensity is a second-order quantity (involving the 
square of the acoustic pressure). Hence, in deriving the intensity it would 
clearly be unjustified to neglect second-order terms in the basic equations 
as was done in linearizing equations (1) to (3). 

I n  this paper we shall confine ourselves to deriving an expression for the 
acoustic intensity, correct to second order, for the one-dimensional case 
of a plane sound wave propagating in a medium which is moving with the 
(constant) velocity V = cM in the direction of propagation. This is done 
in the Appendix, and the result turns out to be 

I =  - P 2  ( l + M ) .  
P O C  

(19) 

We shall then make the assumption that this expression represents a 
reasonable approximation to the actual intensity I(y) in the shear flow if p 
and M are replaced b y p ( y )  and M ( y ) ,  i.e. by the known values of these 
quantities in the shear flow. This  approximation is presumbly better the 
higher the frequency. 

On introducing I ( y )  from (19) into (18), we obtain 

I n  accordance with the discussion of the one-seventh-power profile 
of figure 5 given at the end of the last section, we suppose the Mach number of 
the flow to start from a value M,, = ZMl at y = 0 and to increase uniformly 
to Ml at y = L. Now the pressure variation across the shear layer, given 
by F, depends on the velocity gradient only and is not changed by the 
superposition of the constant flow Mo. Thus the function F is still given 
by equation (9). On the other hand, the factor (1 + M )  in equation (20) 
clearly involves the total Mach number. Thus, to the first order in E = 7 - 1 
we have 

F = 3-lI6( 1 + 0 * 9 0 ~ ) f ( ~ ) ,  
2 c 2  
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where f ( u )  = Bi( - u )  - R Ai( - u),  

and = 2 1 ' 3 ( n K ) 2 / 3 4 1  +o.iE). 
Also 

( 1  - ~i.5) du, 
L 
M = M , + K - ~ - - .  

Substituting these expressions into equation (20) gives 

where 

kL 

Figure 7. A plot of the attenuation parameter n as a function of kL for M I  = 0.4. 
The flow velocity increases linearly from a Mach number 0.3 at the wall to 
0.4 at a distance L from the wall. 

All quantities appearing in equation (21) are obtained from the results 
of the first section applied to a Mach number aml. The integral in ( 2 1 )  
can be evaluated with the help of the following relations 

l f z ( u )  du = uf +f2, 

i' u,f2(u) du = ; ( u p  -ff + U 2 f 2 ) ,  

which can be established directly from the equation (9 a) satisfied by f. 
In figure 7 we have plotted n vs kL for a Mach number of 0.4. I t  is 

clear from the figure that the effect of the flow is to increase the attenuation 
of the higher frequencies (kL > 5 )  but to diminish that of the lower 
frequencies (kL < 5). In figure 8 we have plotted n vs the Mach 
number for k L  = 2n and KL = 20. Here we see that for the higher. 
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frequency n increases with Mach number up to a certain point but then 
begins to  diminish again when the Mach number becomes too large. On 
the other hand, for the longer wavelength (KL = 27r) n remains always 
near to unity, indicating that for this case the flow practically annuls thc 
attenuation. As pointed out in the Introduction, these results are due to the 
opposing effects of refraction by the flow gradient and increased intensity 
due to  the mean flow. T h e  presence of these two factors is clear from the 
expression (20) for n where the term represents the contribution 
from refraction and the term 1 + M  that from the mean flow. 

n 

0.4 0.8 1.2 1.6 2.0 
M, 

Figure 8. A plot of n vs M ,  for kL = 2i-r and kL = 20. The flow increases linearly 

It should again be pointed out that the analysis in $ 3  has been applied 
only to subsonic Mach numbers. Thus, for example, the point MI = 1 
on the abscissa in figure 8 is to be interpreted as meaning a constant flow 
with Mo = 0.75 superposed on a shear flow which increases linearly from 
M = 0 to M = 0.25 ; $ 3  has been required only in dealing with the 
superposed shear flow. 

from $fill at the wall to M ,  at a distance L from the wall. 

The  author is indebted to Professor Lighthill for several helpful 
discussions of this problem. 

Acoustic intensity in a moving medium 
APPENDIX 

T h e  energy flow in a moving medium is given by (cf. Blokhintsev 1956, 
P. 4) 

N = ( &pv2 + pE +P)v ,  (1 A) 
where p is the density, E the internal energy per unit mass, p the pressure, 
and v the total velocity. For an ideal gas pE = p / ( y  - 1) where y is the ratio 
of the specific heats. 

where po  is the undisturbed pressure, p l  the first-order acoustic pressure, 
and p ,  the second-order acoustic pressure (of the order of p ; )  and so on. 

We now write 
P = p , + p , + p , ,  p = p o + p 1 + p 2 ,  v = V + V , + V , ,  
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If we define the acoustic intensity I as the difference between the flow 
vectors N as calculated from ( 1  A) with and without the sound field present, 
we obtain with an accuracy up to terms of second order 

I =  N - N o = # p o ~ t  V + + p o V 2 ~ 2 + # p 1 ~ 1 V 2 + ~ p 2 V 3 +  

+ b / ( Y -  l)}(P2 V+P1'U1+Pov2), P A )  
where the bar over N - N o  indicates a time average, but bars are omitted 
from terms on the right for convenience. In deriving the above expression 
it has been assumed that the velocities V, v1 and v2 all lie in the same direction 
and that the time average of all first-order quantities is zero. 

We next express all second-order quantities in terms of first-order 
quantities as follows. The equation of conservation of mass in one 
dimension a 

at ax 
3 + - (pv )  = 0 

becomes on time-averaging 

Similarly the equation of conservation of momentum 
POv2+P174+P2 v = 0. 

gives pov;+2po Vv2+2p1v1 v + p 2  v 2 + p 2  = 0. (4 A) 

Pl = C2Pl, (5 A) 

p ,  = c2p2+ y -  - c"?, (6  A) 

Finally, the equation of state, p = p o ( p / p o ) ~ ,  gives 

and 

where c2 = ypo/po. 2P" 
The three equations ( 3  A), (4A) and (6A) deterrninc p, ,  p 2  and v, in 

terms of zero- and first-order quantities ; 
2 + M2(y - 1 )  

P2 = --Po$ 2 ( 1 - M 2 )  9 

v; y + l  
c2 2(1-  M2)' 

P2 = - P o  - 

Po 
where M = Vlc. 

If we now substitute these expressions into (2 A) and make use of (5 A), 
together with the plane wave relation p ,  = po cvl, we obtain, after reduction, 

I = 2 P2 ( l + M ) .  
Po c 
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